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Gauge invariance in second-class constrained systems 
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The Institute of Mathematical Sciences, Madras WO 113, India 

Received 6 Octter 1992. in final form 22 June 1993 

Abstract. We show that many second-class constrained HamilloNan systems can be 
reformulated as firstclass syslems within the same phase space. 

Dirac [I]  classified the constraints of a Hamiltonian system as beiiig first and second class, 
the former having vanishing Poisson brackets (m) constraint algebra on the constrained 
surface, and the latter non-vanishing. Second-class systems naturally define a local projected 
symplectic manifold, while the first-class constraints imply existence of redundant so-called 
gauge degrees of freedom; consequently the Hamiltonian dynamics has gauge invariance. 

Symmetries of a system are useful in understanding the dynamics. If we reformulate 
a second-class system as first class we are exhibiting gauge symmetries, namely the ones 
associated with the first-class constraints, at the kinematic level. Recently gauge invariance 
and its associated symmetries have become an important feature in establishing the existence 
of the corresponding quantum theory, noted examples being renormalizability of QED and 
QCo. There are other examples [Z], such as anomalous gauge theories, wherein classical 
gauge symmetries cease to exist upon quantization. The existence of these quantum theories 
are plagued with problems of renormalizability. It is believed that these issues can be settled 
by understanding the underlying symmetries in the quantum theory. 

Faddeev and Shatashvili [3] have argued a simple general principle by which one 
enlarges the phase space and introduces a compensatory dynamics such that in the total 
phase space one realizes only firstclass constraints. This has been adopted in the BRST 
framework by Batalin and Fradkin [4]. Mitra and Rajaraman [SI found that in certain 
dynamical systems the reformulation of second-class constraints as first class may possibly 
be done without enlarging the phase space. They showed explicitly that in a special class 
of Lagrangian dynamics, which yields hierarchical constraint pB algebra, one can eliminate 
all second-class constraints and obtain only first-class constraints. In this paper we will 
show that many Hamiltonian systems (irrespective of the existence of a Lagrangian) with 
second-class constraints can be reformulated as first-class consbained systems. There are 
some which are essentially second class, namely they do not admit gauge-lie constraints 
globally although they do admit them locally. 

In a first-class constrained system with Hamiltonian H and one constraint x = 0, by 
making the gauge fixing choice $ = 0 and suitably modifying the Hamiltonian we can 
define a second-class system with the same physical content as the original system [6]. 
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In constrast, we consider here a system with two second-class constraints and identify one 
constraint as a gauge-fixing-like constraint $ = 0 and call the other x = 0 the first-class-like 
constraint. Although naively true, in general this poses a problem, namely the constraint 
x = 0 will be preserved in time only modulo the constraint $ = 0. To avoid this technical 
difficulty we construct a modified Hamiltonian H which preserves the constraint x = 0 
if? time evolution, such that if one makes the gauge fixing choice $ = 0. we should have 
H = H. thus ensuring that the physical content of the new dynamics is equivalent to our 
original dynamics. 

For simplicity we consider first the case where there is only one pair of second-class 
constraints. Then we show how we can treat the general case. Examples of the application 
of this algorithm will be considered in a separate publication. 

Consider a Hamiltonian H ( p .  9) generating the dynamics over a phase space ( p .  4) 
with canonical PB algebra. For brevity we shall not write a distinguishing index for the 
various p’s and q ’ s  explicitly. Let the system have two second-class constraint functionals 
x ( p , q )  = 0 and $(p. q )  = 0 with the following PE relation: 

R Anishetty and A S btheeswara 

( x .  $ 1  = E (1) 

where E # 0 on the surface defined by the two constraints. Without losing any generality 
we can rewrite (I)  as 

[x’. $1 = 1 + { E - ’ ,  $ ]EX’  (2) 

where x’ E-’x .  

H on the surface defined by both the constraints, we have 
In general, since the constraints x = 0 and $ = 0 are preserved under the evolution by 

( x ,  HI aJr (3) 

where we have omitted the superscript on x and ‘2 implies equality on the surface defined 
by only x = 0. Also a ( p ,  9) does not necessarily vanish. 

Our task now is to modify H such that x = 0 becomes time-independent modulo only 
x = 0. On the symplectic manifold let us work on a patch near a zero of the functional 
$(p,q): By local canonical transformation we can indeed take x and Jr itself as one 
pair of approximate canonical co-ordinates, due to (2). If we make a Taylor expansion of 
H in the variable $, the leading term HO will have vanishing PB with x by definition. 
Furthermore on the constrained surface Jr = 0, we get H = Ho. Hence, locally HO is our 
desired modified Hamiltonian. Implementing this idea analytically we have a prescription 
for constructing a global analogue of HO from H by the use of the following Lie projection 
operator P: for any arbitrary functional A ( p ,  9)  on the phase space 

A“ PAfp ,  q)  

(4) 

i A  = ( x ,  A } .  (5) 

= - .  . e-*,? : A 

where ,f is a Lie operator [6] defined by 

In (4) the last expression defines our normal ordering of the Lie operator, namely all the 
functionals $ are to be placed on the let? in the Taylor expansion. The projection operator 
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is deftned globally on the phase space, namely a power series expansion always exists for 
any A. 

The projection operator P acts linearly on any functional defined on the phase 
space and satisfies the following relations on the constrained surface x = 0 

[A". E1 P(t.4, B l  - [*, AHB, X I  + [@, BHA, X I )  (7) 

where the right-hand side of (7) is the Lie projection on the D i m  bracket between A and 
B. 

The projeaed functionals also satisfy the Jacobi identity on the constrained surface. 
namely 

(8) 
- - -  - _ -  

(A, { B , C ) )  + ( B ,  (C, A ) )  i- Cc", (x,  El) E 0 . 
Furthermore 

P(AB) = @A)(PB) = A"B" 

A"(P, 4) = A ( E  3.  

(90) 

and 

(96) 

Applying the projection operator on H, we obtain H" such that H" 2 Ho, i.e. H" differs 
from If0 by terms proportional to x. By construction we have (x, H) E 0. Hence- our 
first-class dynamical system is defined by the constraint x E 0 and the Hamiltonian H. 

A few remarks are in order about our modified Hamiltonian i?. Ho is defined IocaJly, 
hence the equality H" E HO is to be understood locally. However. the left-hand si& H is 
defined globally by construction; consequently we have our desired result globally. It is 
quite clear that a global HO may be impossible. For example, if Jr = 0 were a polynomial 
equation of degree greater than one in p and q.  then by a suitable choice we may solve for 
some phase space variable explicitly. But we cannot eliminate it for we have more than 
one permitted solution. Whenever we have more than one permitted solution we have to 
analyse within the patch of a solution thus restricting ourselves to local analysis. But it 
is interes@g that in any patch we can add terms proportional to x such that the resultant 
function H is globally defined. In other words HO in one patch can be matched with HO in 
another patch upto gauge transformations. 

To illustrate our formalism, we consider a free particle moving along two intersecting 
circles with centres at &a of radius R and given by the constraint 

Q, = [ (r  + ay - - ay - RZI 
= (rZ +az - R2)' - 4 ( a .  r)' = 0. 

The Hamiltonian is 
1 H = -p2. 

2m 
The constraint (IO) is preserved in time if we further impose the constraint 

4 
Q ~ = - ~ T . P ( ~ * + U ' - R ~ ) - ~ ( ~ . ~ ) ( T ~ ~ ) ] = O .  (12) m 
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These constraints form the Poisson bracket algebra 
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[ Q l , Q z ) = m ( a . ~ ) 2 ~ + - ~ 2 Q ,  64 16 = E .  
m (13) 

Note that E is non-zero everywhere except at the points of intersection. Thus (IO) and (12) 
form a second-class constrained system. 

To carry out the gauge reformulation of the above theory, we redefine the constraints as 

x = E - ' Q l  $ t = Q z .  (14) 

Defining the projection operator of the type (4). we get our gauge invariant Hamiltonian 
on the surface given by (10) 

The gauge invariant Hamiltonian fi is invariant under the transformation 

where fi is the arbitrary gauge transformation parameter. 
We notice that the metric 8 is singular on the constraint surface, i.e detz = 0 on (10). 

Furthermore det is not of any definite sign on the configuration space. The Ricci scalar 
curvature is singular on (10) as x-"'. 

We remark that if we interchange the roles of Q] and Q2 in (14). we get a Hamiltonian 
fi which is an infinite series. 

Next we consider the case where there are finitely many constraints @,(p ,  q )  = 0, i = 
1.2, . . . , 2 N  defining the constraint surface zZN, with the PB algebra 

l@ii,@ji) = Eij (16) 

where E is globally invertible on xZN. Our first task is to classify these constraints into 
gauge-generator-like constraints x and gauge-fixing-like constraints $. Locally on the phase 
space there are indeed many choices available since, due to Darboux's theorem, there are 
linear combinations of the @i which have an E matrix in a Jordan canonical form. However, 
for our purpose here we need to be able to do thii globally. In general we do not have a 
global analogue of Darboux's theorem. Although in many explicit examples in field theory 
this is not a serious problem, we shall look into it in detail. We find that whenever the E 
matrix has a submatrix of dimension N which is globally inverrible on CZN then there exist 
gauge-generatinelike and gauge-fixinglike constraints globally. To see this let us assume 
we can write E as 

where E l ,  EZ and E3 are matrices of dimension N and for a suitable choice of index 
labelling we can assume that E3 is invertible on zZN. 

Making a transformation on the @i to @: = A;j@j where the 2Ndimensional matrix A 
is given by (18) below we can have our new matrix E' as in (18). On the surface 
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where A3 satisfies the equation 

A 3 E 2 A T  + E 3 A r  - A 3 E T  + E I  = 0 .  

The N dimensional matrix A3 can be solved as a series in E l ,  since E 3  is invertible. 
This solution is global. Then our gauge generators are x. = q5: for a = 1,2, . . . , N and 

From our construction, E; is also invertible since det E # 0. Therefore by redefining 
$0 &+. such that { X o ,  'bbrb) = ( E ; ) o b  and { X a ,  X b ]  0 On 

x (x' = E; 'x )  we have on the surface CZN 
k z s  $b1 = 6ob ( 2 0 4  

and 

{ X a .  X b )  = 0 (20b) 

Now we have to describe a consistent dynamics on the surface defined by x. = 0 alone. 
f o r a  = 1,2 ,..., N .  

We follow a hierarchical scheme. By suitable rescaling of x1 we have 

(XI* =I 1 

where ' = I '  implies equality on the surface xI = 0 alone. We construct the projection 
operator 

pi =: exp(- : . 
The pB of x I  with the projected functionals E' and GI, $2 vanishes on the 5, = 0 

Furthermore on the surface defined by xI = 0 and El = 0 = $2 for surface. 
a = 2,3, . . . , N, we have 

Consequently, x I  is a proper first-class constraint of our dynamical system with the 
other constraints forming a second-class algebra. By suitably rescaling X;' we can arrange 
that [X; 1 , $2 1 22 1. We then define 

(22) - 1 1 5 1  P 2  =: exp(- $2 x2 ) :PI 

and get -2 functionals which are consistent with X;' = 0 and x I  = 0 as being first-class 
consbaints. Iterating this procedure, we define - 

=: exp(- +o '-I) : . 
The projection operator PN makes ZN as the globally defined Hamiltonian equivalent to 
our original dynamical system and c0-1 = 0 as our first-class constraints. In general these 
generators obey the following PB algebra: for 6 c a 

(23) 
[ < a ~ - l , < b b - l ) = g  x - b-1. 

ab b 
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A few remarks are in order. It is evident that there can be second-class systems, whose 
E matrix (17) has a globally invertible submatrix E3 of dimension n < N. In this case from 
our constructive proof given above we will have only n gauge globally definable generators. 
Having additional first-class constraints along with second-class ones to begin with does not 
hinder our construction of this projection operator. We find that in general, any constrained 
system with maximal number of constraints, say n, whose PB algebra vanishes globally, 
admits n gauge generator-like constraints. To reiterate there are certain dynamical systems 
which are essentially second class in the sense they do not admit gauge-like constraints 
globally. These need to be handled by the Dirac bracket formalism. 

The first-class constraints xi define the gauge generators. In our algorithm we find that 
,y, are not uniquely defined, i.e. the gauge generators are ambiguous (we saw this in the 
example given earlier). The ambiguity is lifted if we pay more attention to our projection 
operator. Although P is formally well defined on any functional A ( p ,  q )  as a power series, 
the series may or may not converge. More specifically if x ( p , q )  needs to be a physical 
variable the convergence of this series is necessary. We find in explicit examples that 
one choice of x yields in fact a finite series while an alternative choice yields an infinite 
series. Consequently, we believe that in general there are other considerations which make 
the choice of x unique, hence the gauge group. This shall be discussed in detail in a later 
publication 171. We have applied our method to various cases; in particular those considered 
in [SI are also examples of our method. 

We make a comment about a second-class constrained system which has a subset of 
constraints xG which form a first-class PB algebra within themselves, namely (xo. X b )  = 
fab&. In these cases we need not go through the hierarchical process explained above. 
Here we only have the problem of getting the modified Hamiltonian which ensures the 
time-independence of the first-class subset of constraints. The alternative algorithm stated 
in [7] yields a modified Hamiltonian which is again a series in $1. the set of gauge fixing 
constraints corresponding to the first-class constraints. It is interesting that in this case the 
structure functions of the constraint PB algebra, i.e. the analogues of gobc vanish on the 
first-class constrained surface. 

All our discussion has been classical. The canonical quantization program can be 
envisaged quite naturally with the projected variables. An important requirement being 
the Jacobi identity (9 )  is satisfied on the constraint surface. The standard operator 
ordering problems which occur when we go from classical to quantum variables have to be 
reconsidered. Alternatively we may thii of defining the projection operator on the Hilbert 
space directly, i.e. define the operator 2 on the Hilbert space as a commutator ? A  = [ x ,  Al. 
In general this may not yield a projection operator due to ordering problems in the series 
in (4). In either case on a finite dimensional phase space, we can always find an operator 
ordering satisfying the desired property of the projection operator [8]. 

Our method is applicable to classical field theories with second-class constraints. Upon 
quantization of these field theories we cannot guarantee that there will not be any anomalies. 
This is a subject matter of great interest which is being looked into. In the literature [9] 
there has been an interesting application of removing quantum anomalies in a semiclassical 
sense using this type of construction. 

Formally speaking our construction of the projection operator is also amenable to 
femionic constraints, such as those in BRST quantization. All Poisson brackets 141 have to 
be interpreted as anti-commutators and some attention should be given to the orderings of 
the Grassmann variables. 
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